图论问题--求哈密尔顿回路的问题

题目大意:给一个含有 n(2≤n≤1000) 个点的无向图,图中每个顶点至少有 (n+1)/2 个相邻点,让求一条 Hamilton 回路

注意到 "每个顶点至少有 (n+1)/2 个相邻点" 这句话,满足 Ore 定理,直接构造解即可,构造的方法就是在证明定理 2 时使用的方法

 
#include <cstring>
#include <cstdio>
#include <iostream>
#include <list>
#include<stdio.h>
using namespace std;

struct Hamilton_Circuit {
    static const int N=1006;

    bool G[N][N], vs[N];
    int n, next[N], head, tail;

    void init(int _n) {
        n=_n;
        memset(G, 0, sizeof G);
    }

    void DFS_Head(int u) {
        vs[u]=1;
        for(int i=0; i<n; i++) if(G[i][u] && !vs[i]) {
            next[i]=u;
            DFS_Head(i);
            return;
        }
        head=u;
    }

    void DFS_Tail(int u) {
        vs[u]=1;
        for(int i=0; i<n; i++) if(G[u][i] && !vs[i]) {
            next[u]=i;
            DFS_Tail(i);
            return;
        }
        tail=u;
    }

    void Reverse(int u) {
        for(int i=next[u], temp, last=-1; i!=-1; i=temp) {
            temp=next[i];
            next[i]=last;
            last=i;
        }
        int temp=tail;
        tail=next[u];
        next[u]=temp;
    }

    int Find(int u) {
        for(int i=head; i!=-1; i=next[i]) {
            if(G[u][next[i]]) return i;
        }
        return -1;
    }

    bool Extend(int u) {
        if(G[u][head]) {
            next[u]=head;
            return 1;
        }
        int pre=Find(u);
        if(pre==-1) return 0;
        next[u]=next[pre];
        next[tail]=head;
        next[tail=pre]=-1;
        return 1;
    }

    void Solve() {
        memset(next, -1, sizeof next);
        memset(vs, 0, sizeof vs);
        DFS_Head(0), DFS_Tail(0);
        int Len=1;
        for(int i=head; i!=tail; i=next[i], Len++);
        for(int i; 1; ) {
            if(!G[tail][head]) {
                for(i=next[head]; !(G[i][tail] && G[next[i]][head]); i=next[i]);
                Reverse(i);
            }
            if(Len==n) break;
            for(i=0; i<n; i++) if(!vs[i] && Extend(i)) {
                head=i, vs[i]=1, Len++;
                break;
            }
        }
    }

    void PRINT() {
        for(int i=head; head!=0; i=next[i]) {
            next[tail]=head;
            tail=head;
            head=next[head];
            next[tail]=-1;
        }
        for(int i=head; i!=-1; i=next[i]) {
            printf("%d", i+1);
            if(next[i]==-1) printf(" 1\n");
            else printf(" ");
        }
    }
};

Hamilton_Circuit fuck;
int n;

int main() {
    //scanf("%d", &n);
	std::cin>>n;
    fuck.init(n);
    for(int i=0; i<n; i++) {
        for(int x; ; ) {
            //scanf("%d", &x);
			std::cin>>x;
            fuck.G[i][x-1]=1;
            x=getchar();
            if(x=='\n' || x=='\r' || x==EOF) break;
        }
    }
    fuck.Solve();
    fuck.PRINT();
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值